library(tfdatasets)
data(hearts)
<- tensor_slices_dataset(hearts) %>% dataset_batch(32)
hearts
# use the formula interface
<- feature_spec(hearts, target ~ .)
spec
# select using `tidyselect` helpers
<- feature_spec(hearts, x = c(thal, age), y = target) spec
feature_spec
Creates a feature specification.
Description
Used to create initialize a feature columns specification.
Usage
feature_spec(dataset, x, y = NULL)
Arguments
Arguments | Description |
---|---|
dataset | A TensorFlow dataset. |
x | Features to include can use tidyselect::select_helpers() or a formula . |
y | (Optional) The response variable. Can also be specified using a formula in the x argument. |
Details
After creating the feature_spec
object you can add steps using the step
functions.
Value
a FeatureSpec
object.
Examples
See Also
fit.FeatureSpec()
to fit the FeatureSpecdataset_use_spec()
to create a tensorflow dataset prepared to modeling.steps to a list of all implemented steps.
Other Feature Spec Functions:
dataset_use_spec()
,fit.FeatureSpec()
,step_bucketized_column()
,step_categorical_column_with_hash_bucket()
,step_categorical_column_with_identity()
,step_categorical_column_with_vocabulary_file()
,step_categorical_column_with_vocabulary_list()
,step_crossed_column()
,step_embedding_column()
,step_indicator_column()
,step_numeric_column()
,step_remove_column()
,step_shared_embeddings_column()
,steps