library(tfautograph)
## square if positive
# using tf$cond directly:
<- function(x) tf$cond(x > 0, function() x * x, function() x)
raw
# using tf_cond() wrapper
<- function(x) tf_cond(x > 0, ~ x * x, ~ x) tilde
tf_cond
tf.cond
Description
This is a minimal wrapper around tf$cond()
that allows you to supply true_fn
and false_fn
as lambda functions defined using the tilde ~
.
Usage
tf_cond(pred, true_fn, false_fn, name = NULL)
Arguments
Arguments | Description |
---|---|
pred | R logical or a tensor. |
true_fn, false_fn | a ~ function, a function, or something coercible to a function via as.function |
name | a string, passed on to tf.cond() |
Value
if cond is a tensor, then the result of tf.cond()
. Otherwise, if pred
is an EagerTensor
or an R logical, then the result of either true_fn()
or false_fn()
Note
in Tensorflow version 1, the strict
keyword argument is supplied with a value of TRUE
(different from the default)