predict_proba
(Deprecated) Generates probability or class probability predictions for the input samples.
Description
These functions were removed in Tensorflow version 2.6. See details for how to update your code:
Usage
predict_proba(object, x, batch_size = NULL, verbose = 0, steps = NULL)
predict_classes(object, x, batch_size = NULL, verbose = 0, steps = NULL)
Arguments
Arguments | Description |
---|---|
object | Keras model object |
x | Input data (vector, matrix, or array). You can also pass a tfdataset or a generator returning a list with (inputs, targets) or (inputs, targets, sample_weights) . |
batch_size | Integer. If unspecified, it will default to 32. |
verbose | Verbosity mode, 0, 1, 2, or “auto”. “auto” defaults to 1 for for most cases and defaults to verbose=2 when used with ParameterServerStrategy or with interactive logging disabled. |
steps | Total number of steps (batches of samples) before declaring the evaluation round finished. The default NULL is equal to the number of samples in your dataset divided by the batch size. |
Details
How to update your code: predict_proba()
: use predict()
directly. predict_classes()
:
If your model does multi-class classification: (e.g. if it uses a
softmax
last-layer activation).```
model %>% predict(x) %>% k_argmax()
- if your model does binary classification (e.g. if it uses a `sigmoid` last-layer activation).
model %>% predict(x) %>% `>`(0.5) %>% k_cast("int32")
``` The input samples are processed batch by batch.
See Also
Other model functions: compile.keras.engine.training.Model()
, evaluate.keras.engine.training.Model()
, evaluate_generator()
, fit.keras.engine.training.Model()
, fit_generator()
, get_config()
, get_layer()
, keras_model_sequential()
, keras_model()
, multi_gpu_model()
, pop_layer()
, predict.keras.engine.training.Model()
, predict_generator()
, predict_on_batch()
, summary.keras.engine.training.Model()
, train_on_batch()