metric_sensitivity_at_specificity
Computes best sensitivity where specificity is >= specified value
Description
The sensitivity at a given specificity.
Usage
metric_sensitivity_at_specificity(
...,
specificity, num_thresholds = 200L,
class_id = NULL,
name = NULL,
dtype = NULL
)
Arguments
Arguments | Description |
---|---|
… | Passed on to the underlying metric. Used for forwards and backwards compatibility. |
specificity | A scalar value in range [0, 1] . |
num_thresholds | (Optional) Defaults to 200. The number of thresholds to use for matching the given specificity. |
class_id | (Optional) Integer class ID for which we want binary metrics. This must be in the half-open interval [0, num_classes) , where num_classes is the last dimension of predictions. |
name | (Optional) string name of the metric instance. |
dtype | (Optional) data type of the metric result. |
Details
Sensitivity
measures the proportion of actual positives that are correctly identified as such (tp / (tp + fn))
. Specificity
measures the proportion of actual negatives that are correctly identified as such (tn / (tn + fp))
. This metric creates four local variables, true_positives
, true_negatives
, false_positives
and false_negatives
that are used to compute the sensitivity at the given specificity. The threshold for the given specificity value is computed and used to evaluate the corresponding sensitivity. If sample_weight
is NULL
, weights default to 1. Use sample_weight
of 0 to mask values. If class_id
is specified, we calculate precision by considering only the entries in the batch for which class_id
is above the threshold predictions, and computing the fraction of them for which class_id
is indeed a correct label. For additional information about specificity and sensitivity, see the following.
Value
A (subclassed) Metric
instance that can be passed directly to compile(metrics = )
, or used as a standalone object. See ?Metric
for example usage.
See Also
Other metrics: custom_metric()
, metric_accuracy()
, metric_auc()
, metric_binary_accuracy()
, metric_binary_crossentropy()
, metric_categorical_accuracy()
, metric_categorical_crossentropy()
, metric_categorical_hinge()
, metric_cosine_similarity()
, metric_false_negatives()
, metric_false_positives()
, metric_hinge()
, metric_kullback_leibler_divergence()
, metric_logcosh_error()
, metric_mean_absolute_error()
, metric_mean_absolute_percentage_error()
, metric_mean_iou()
, metric_mean_relative_error()
, metric_mean_squared_error()
, metric_mean_squared_logarithmic_error()
, metric_mean_tensor()
, metric_mean_wrapper()
, metric_mean()
, metric_poisson()
, metric_precision_at_recall()
, metric_precision()
, metric_recall_at_precision()
, metric_recall()
, metric_root_mean_squared_error()
, metric_sparse_categorical_accuracy()
, metric_sparse_categorical_crossentropy()
, metric_sparse_top_k_categorical_accuracy()
, metric_specificity_at_sensitivity()
, metric_squared_hinge()
, metric_sum()
, metric_top_k_categorical_accuracy()
, metric_true_negatives()
, metric_true_positives()