R/metrics.R

metric_mean_squared_error

Computes the mean squared error between labels and predictions

Description

Computes the mean squared error between labels and predictions

Usage

 
metric_mean_squared_error( 
  y_true, 
  y_pred, 
  ..., 
  name = "mean_absolute_percentage_error", 
  dtype = NULL 
) 

Arguments

Arguments Description
y_true Tensor of true targets.
y_pred Tensor of predicted targets.
Passed on to the underlying metric. Used for forwards and backwards compatibility.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

Details

After computing the squared distance between the inputs, the mean value over the last dimension is returned. loss = mean(square(y_true - y_pred), axis=-1)

Value

If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object can be passed directly to compile(metrics = ) or used as a standalone object. See ?Metric for example usage. Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for the mini-batch are returned directly.

See Also

Other metrics: custom_metric(), metric_accuracy(), metric_auc(), metric_binary_accuracy(), metric_binary_crossentropy(), metric_categorical_accuracy(), metric_categorical_crossentropy(), metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(), metric_false_positives(), metric_hinge(), metric_kullback_leibler_divergence(), metric_logcosh_error(), metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(), metric_mean_relative_error(), metric_mean_squared_logarithmic_error(), metric_mean_tensor(), metric_mean_wrapper(), metric_mean(), metric_poisson(), metric_precision_at_recall(), metric_precision(), metric_recall_at_precision(), metric_recall(), metric_root_mean_squared_error(), metric_sensitivity_at_specificity(), metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(), metric_sparse_top_k_categorical_accuracy(), metric_specificity_at_sensitivity(), metric_squared_hinge(), metric_sum(), metric_top_k_categorical_accuracy(), metric_true_negatives(), metric_true_positives()