metric_mean_relative_error
Computes the mean relative error by normalizing with the given values
Description
Computes the mean relative error by normalizing with the given values
Usage
metric_mean_relative_error(..., normalizer, name = NULL, dtype = NULL)
Arguments
Arguments | Description |
---|---|
… | Passed on to the underlying metric. Used for forwards and backwards compatibility. |
normalizer | The normalizer values with same shape as predictions. |
name | (Optional) string name of the metric instance. |
dtype | (Optional) data type of the metric result. |
Details
This metric creates two local variables, total
and count
that are used to compute the mean relative error. This is weighted by sample_weight
, and it is ultimately returned as mean_relative_error
: an idempotent operation that simply divides total
by count
. If sample_weight
is NULL
, weights default to 1. Use sample_weight
of 0 to mask values. ```
metric = mean(|y_pred - y_true| / normalizer)
For example:
m = metric_mean_relative_error(normalizer=c(1, 3, 2, 3))
m$update_state(c(1, 3, 2, 3), c(2, 4, 6, 8))
# result = mean(c(1, 1, 4, 5) / c(1, 3, 2, 3)) = mean(c(1, 1/3, 2, 5/3))
# = 5/4 = 1.25
m$result()
```
Value
A (subclassed) Metric
instance that can be passed directly to compile(metrics = )
, or used as a standalone object. See ?Metric
for example usage.
See Also
Other metrics: custom_metric()
, metric_accuracy()
, metric_auc()
, metric_binary_accuracy()
, metric_binary_crossentropy()
, metric_categorical_accuracy()
, metric_categorical_crossentropy()
, metric_categorical_hinge()
, metric_cosine_similarity()
, metric_false_negatives()
, metric_false_positives()
, metric_hinge()
, metric_kullback_leibler_divergence()
, metric_logcosh_error()
, metric_mean_absolute_error()
, metric_mean_absolute_percentage_error()
, metric_mean_iou()
, metric_mean_squared_error()
, metric_mean_squared_logarithmic_error()
, metric_mean_tensor()
, metric_mean_wrapper()
, metric_mean()
, metric_poisson()
, metric_precision_at_recall()
, metric_precision()
, metric_recall_at_precision()
, metric_recall()
, metric_root_mean_squared_error()
, metric_sensitivity_at_specificity()
, metric_sparse_categorical_accuracy()
, metric_sparse_categorical_crossentropy()
, metric_sparse_top_k_categorical_accuracy()
, metric_specificity_at_sensitivity()
, metric_squared_hinge()
, metric_sum()
, metric_top_k_categorical_accuracy()
, metric_true_negatives()
, metric_true_positives()