metric_hinge
Computes the hinge metric between y_true
and y_pred
Description
y_true
values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
Usage
metric_hinge(y_true, y_pred, ..., name = "hinge", dtype = NULL)
Arguments
Arguments | Description |
---|---|
y_true | Tensor of true targets. |
y_pred | Tensor of predicted targets. |
… | Passed on to the underlying metric. Used for forwards and backwards compatibility. |
name | (Optional) string name of the metric instance. |
dtype | (Optional) data type of the metric result. |
Details
loss = tf$reduce_mean(tf$maximum(1 - y_true * y_pred, 0L), axis=-1L)
Value
If y_true
and y_pred
are missing, a (subclassed) Metric
instance is returned. The Metric
object can be passed directly to compile(metrics = )
or used as a standalone object. See ?Metric
for example usage. Alternatively, if called with y_true
and y_pred
arguments, then the computed case-wise values for the mini-batch are returned directly.
See Also
Other metrics: custom_metric()
, metric_accuracy()
, metric_auc()
, metric_binary_accuracy()
, metric_binary_crossentropy()
, metric_categorical_accuracy()
, metric_categorical_crossentropy()
, metric_categorical_hinge()
, metric_cosine_similarity()
, metric_false_negatives()
, metric_false_positives()
, metric_kullback_leibler_divergence()
, metric_logcosh_error()
, metric_mean_absolute_error()
, metric_mean_absolute_percentage_error()
, metric_mean_iou()
, metric_mean_relative_error()
, metric_mean_squared_error()
, metric_mean_squared_logarithmic_error()
, metric_mean_tensor()
, metric_mean_wrapper()
, metric_mean()
, metric_poisson()
, metric_precision_at_recall()
, metric_precision()
, metric_recall_at_precision()
, metric_recall()
, metric_root_mean_squared_error()
, metric_sensitivity_at_specificity()
, metric_sparse_categorical_accuracy()
, metric_sparse_categorical_crossentropy()
, metric_sparse_top_k_categorical_accuracy()
, metric_specificity_at_sensitivity()
, metric_squared_hinge()
, metric_sum()
, metric_top_k_categorical_accuracy()
, metric_true_negatives()
, metric_true_positives()