metric_categorical_accuracy
Calculates how often predictions match one-hot labels
Description
Calculates how often predictions match one-hot labels
Usage
metric_categorical_accuracy(
y_true,
y_pred,
...,
name = "categorical_accuracy",
dtype = NULL
) Arguments
| Arguments | Description |
|---|---|
| y_true | Tensor of true targets. |
| y_pred | Tensor of predicted targets. |
| … | Passed on to the underlying metric. Used for forwards and backwards compatibility. |
| name | (Optional) string name of the metric instance. |
| dtype | (Optional) data type of the metric result. |
Details
You can provide logits of classes as y_pred, since argmax of logits and probabilities are same. This metric creates two local variables, total and count that are used to compute the frequency with which y_pred matches y_true. This frequency is ultimately returned as categorical accuracy: an idempotent operation that simply divides total by count. y_pred and y_true should be passed in as vectors of probabilities, rather than as labels. If necessary, use tf.one_hot to expand y_true as a vector. If sample_weight is NULL, weights default to 1. Use sample_weight of 0 to mask values.
Value
If y_true and y_pred are missing, a (subclassed) Metric instance is returned. The Metric object can be passed directly to compile(metrics = ) or used as a standalone object. See ?Metric for example usage. Alternatively, if called with y_true and y_pred arguments, then the computed case-wise values for the mini-batch are returned directly.
See Also
Other metrics: custom_metric(), metric_accuracy(), metric_auc(), metric_binary_accuracy(), metric_binary_crossentropy(), metric_categorical_crossentropy(), metric_categorical_hinge(), metric_cosine_similarity(), metric_false_negatives(), metric_false_positives(), metric_hinge(), metric_kullback_leibler_divergence(), metric_logcosh_error(), metric_mean_absolute_error(), metric_mean_absolute_percentage_error(), metric_mean_iou(), metric_mean_relative_error(), metric_mean_squared_error(), metric_mean_squared_logarithmic_error(), metric_mean_tensor(), metric_mean_wrapper(), metric_mean(), metric_poisson(), metric_precision_at_recall(), metric_precision(), metric_recall_at_precision(), metric_recall(), metric_root_mean_squared_error(), metric_sensitivity_at_specificity(), metric_sparse_categorical_accuracy(), metric_sparse_categorical_crossentropy(), metric_sparse_top_k_categorical_accuracy(), metric_specificity_at_sensitivity(), metric_squared_hinge(), metric_sum(), metric_top_k_categorical_accuracy(), metric_true_negatives(), metric_true_positives()