layer_separable_conv_2d
Separable 2D convolution.
Description
Separable convolutions consist in first performing a depthwise spatial convolution (which acts on each input channel separately) followed by a pointwise convolution which mixes together the resulting output channels. The depth_multiplier argument controls how many output channels are generated per input channel in the depthwise step. Intuitively, separable convolutions can be understood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version of an Inception block.
Usage
layer_separable_conv_2d(
object,
filters,
kernel_size,
strides = c(1, 1),
padding = "valid",
data_format = NULL,
dilation_rate = 1,
depth_multiplier = 1,
activation = NULL,
use_bias = TRUE,
depthwise_initializer = "glorot_uniform",
pointwise_initializer = "glorot_uniform",
bias_initializer = "zeros",
depthwise_regularizer = NULL,
pointwise_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
depthwise_constraint = NULL,
pointwise_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL,
batch_input_shape = NULL,
batch_size = NULL,
dtype = NULL,
name = NULL,
trainable = NULL,
weights = NULL
) Arguments
| Arguments | Description |
|---|---|
| object | What to compose the new Layer instance with. Typically a Sequential model or a Tensor (e.g., as returned by layer_input()). The return value depends on object. If object is: - missing or NULL, the Layer instance is returned. - a Sequential model, the model with an additional layer is returned. - a Tensor, the output tensor from layer_instance(object) is returned. |
| filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). |
| kernel_size | An integer or list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. |
| strides | An integer or list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. |
| padding | one of "valid" or "same" (case-insensitive). |
| data_format | A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be “channels_last”. |
| dilation_rate | an integer or list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride value != 1. |
| depth_multiplier | The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to filters_in * depth_multiplier. |
| activation | Activation function to use. If you don’t specify anything, no activation is applied (ie. “linear” activation: a(x) = x). |
| use_bias | Boolean, whether the layer uses a bias vector. |
| depthwise_initializer | Initializer for the depthwise kernel matrix. |
| pointwise_initializer | Initializer for the pointwise kernel matrix. |
| bias_initializer | Initializer for the bias vector. |
| depthwise_regularizer | Regularizer function applied to the depthwise kernel matrix. |
| pointwise_regularizer | Regularizer function applied to the pointwise kernel matrix. |
| bias_regularizer | Regularizer function applied to the bias vector. |
| activity_regularizer | Regularizer function applied to the output of the layer (its “activation”).. |
| depthwise_constraint | Constraint function applied to the depthwise kernel matrix. |
| pointwise_constraint | Constraint function applied to the pointwise kernel matrix. |
| bias_constraint | Constraint function applied to the bias vector. |
| input_shape | Dimensionality of the input (integer) not including the samples axis. This argument is required when using this layer as the first layer in a model. |
| batch_input_shape | Shapes, including the batch size. For instance, batch_input_shape=c(10, 32) indicates that the expected input will be batches of 10 32-dimensional vectors. batch_input_shape=list(NULL, 32) indicates batches of an arbitrary number of 32-dimensional vectors. |
| batch_size | Fixed batch size for layer |
| dtype | The data type expected by the input, as a string (float32, float64, int32…) |
| name | An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn’t provided. |
| trainable | Whether the layer weights will be updated during training. |
| weights | Initial weights for layer. |
Section
Input shape
4D tensor with shape: (batch, channels, rows, cols) if data_format=‘channels_first’ or 4D tensor with shape: (batch, rows, cols, channels) if data_format=‘channels_last’.
Output shape
4D tensor with shape: (batch, filters, new_rows, new_cols) if data_format=‘channels_first’ or 4D tensor with shape: (batch, new_rows, new_cols, filters) if data_format=‘channels_last’. rows and cols values might have changed due to padding.
See Also
Other convolutional layers: layer_conv_1d_transpose(), layer_conv_1d(), layer_conv_2d_transpose(), layer_conv_2d(), layer_conv_3d_transpose(), layer_conv_3d(), layer_conv_lstm_2d(), layer_cropping_1d(), layer_cropping_2d(), layer_cropping_3d(), layer_depthwise_conv_1d(), layer_depthwise_conv_2d(), layer_separable_conv_1d(), layer_upsampling_1d(), layer_upsampling_2d(), layer_upsampling_3d(), layer_zero_padding_1d(), layer_zero_padding_2d(), layer_zero_padding_3d()