layer_gru_cell
Cell class for the GRU layer
Description
Cell class for the GRU layer
Usage
layer_gru_cell(
units, activation = "tanh",
recurrent_activation = "sigmoid",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
reset_after = TRUE,
... )
Arguments
Arguments | Description |
---|---|
units | Positive integer, dimensionality of the output space. |
activation | Activation function to use. Default: hyperbolic tangent (tanh ). If you pass NULL , no activation is applied (ie. “linear” activation: a(x) = x ). |
recurrent_activation | Activation function to use for the recurrent step. Default: sigmoid (sigmoid ). If you pass NULL , no activation is applied (ie. “linear” activation: a(x) = x ). |
use_bias | Boolean, (default TRUE ), whether the layer uses a bias vector. |
kernel_initializer | Initializer for the kernel weights matrix, used for the linear transformation of the inputs. Default: glorot_uniform . |
recurrent_initializer | Initializer for the recurrent_kernel weights matrix, used for the linear transformation of the recurrent state. Default: orthogonal . |
bias_initializer | Initializer for the bias vector. Default: zeros . |
kernel_regularizer | Regularizer function applied to the kernel weights matrix. Default: NULL . |
recurrent_regularizer | Regularizer function applied to the recurrent_kernel weights matrix. Default: NULL . |
bias_regularizer | Regularizer function applied to the bias vector. Default: NULL . |
kernel_constraint | Constraint function applied to the kernel weights matrix. Default: NULL . |
recurrent_constraint | Constraint function applied to the recurrent_kernel weights matrix. Default: NULL . |
bias_constraint | Constraint function applied to the bias vector. Default: NULL . |
dropout | Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. |
recurrent_dropout | Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. |
reset_after | GRU convention (whether to apply reset gate after or before matrix multiplication). FALSE = “before”, TRUE = “after” (default and CuDNN compatible). |
… | standard layer arguments. |
Details
See the Keras RNN API guide for details about the usage of RNN API. This class processes one step within the whole time sequence input, whereas tf.keras.layer.GRU
processes the whole sequence. For example: ```
inputs <- k_random_uniform(c(32, 10, 8))
output <- inputs %>% layer_rnn(layer_gru_cell(4))
output$shape # TensorShape([32, 4])
rnn <- layer_rnn(cell = layer_gru_cell(4),
return_sequence = TRUE,
return_state = TRUE)
c(whole_sequence_output, final_state) %<-% rnn(inputs)
whole_sequence_output$shape # TensorShape([32, 10, 4])
final_state$shape # TensorShape([32, 4])
```
See Also
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRUCell
Other RNN cell layers:
layer_lstm_cell()
,layer_simple_rnn_cell()
,layer_stacked_rnn_cells()