Cropping layer for 3D data (e.g. spatial or spatio-temporal).

    Cropping layer for 3D data (e.g. spatial or spatio-temporal).

    layer_cropping_3d(
      object,
      cropping = list(c(1L, 1L), c(1L, 1L), c(1L, 1L)),
      data_format = NULL,
      batch_size = NULL,
      name = NULL,
      trainable = NULL,
      weights = NULL
    )

    Arguments

    object

    Model or layer object

    cropping

    int, or list of 3 ints, or list of 3 lists of 2 ints.

    • If int: the same symmetric cropping is applied to depth, height, and width.

    • If list of 3 ints: interpreted as two different symmetric cropping values for depth, height, and width: (symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop).

    • If list of 3 list of 2 ints: interpreted as ((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_dim2_crop), (left_dim3_crop, right_dim3_crop))

    data_format

    A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels) while channels_first corresponds to inputs with shape (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".

    batch_size

    Fixed batch size for layer

    name

    An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.

    trainable

    Whether the layer weights will be updated during training.

    weights

    Initial weights for layer.

    Input shape

    5D tensor with shape:

    • If data_format is "channels_last": (batch, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, depth)

    • If data_format is "channels_first": (batch, depth, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)

    Output shape

    5D tensor with shape:

    • If data_format is "channels_last": (batch, first_cropped_axis, second_cropped_axis, third_cropped_axis, depth)

    • If data_format is "channels_first": (batch, depth, first_cropped_axis, second_cropped_axis, third_cropped_axis)

    See also