layer_conv_lstm_1d
1D Convolutional LSTM
Description
1D Convolutional LSTM
Usage
layer_conv_lstm_1d(
object,
filters,
kernel_size, strides = 1L,
padding = "valid",
data_format = NULL,
dilation_rate = 1L,
activation = "tanh",
recurrent_activation = "hard_sigmoid",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
dropout = 0,
recurrent_dropout = 0,
... )
Arguments
Arguments | Description |
---|---|
object | What to compose the new Layer instance with. Typically a Sequential model or a Tensor (e.g., as returned by layer_input() ). The return value depends on object . If object is: - missing or NULL , the Layer instance is returned. - a Sequential model, the model with an additional layer is returned. - a Tensor, the output tensor from layer_instance(object) is returned. |
filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). |
kernel_size | An integer or list of n integers, specifying the dimensions of the convolution window. |
strides | An integer or list of n integers, specifying the strides of the convolution. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1. |
padding | One of "valid" or "same" (case-insensitive). "valid" means no padding. "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |
data_format | A string, one of channels_last (default) or channels_first . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, time, ..., channels) while channels_first corresponds to inputs with shape (batch, time, channels, ...) . It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json . If you never set it, then it will be “channels_last”. |
dilation_rate | An integer or list of n integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any dilation_rate value != 1 is incompatible with specifying any strides value != 1. |
activation | Activation function to use. By default hyperbolic tangent activation function is applied (tanh(x) ). |
recurrent_activation | Activation function to use for the recurrent step. |
use_bias | Boolean, whether the layer uses a bias vector. |
kernel_initializer | Initializer for the kernel weights matrix, used for the linear transformation of the inputs. |
recurrent_initializer | Initializer for the recurrent_kernel weights matrix, used for the linear transformation of the recurrent state. |
bias_initializer | Initializer for the bias vector. |
unit_forget_bias | Boolean. If TRUE, add 1 to the bias of the forget gate at initialization. Use in combination with bias_initializer="zeros" . This is recommended in Jozefowicz et al., 2015 |
kernel_regularizer | Regularizer function applied to the kernel weights matrix. |
recurrent_regularizer | Regularizer function applied to the recurrent_kernel weights matrix. |
bias_regularizer | Regularizer function applied to the bias vector. |
activity_regularizer | Regularizer function applied to. |
kernel_constraint | Constraint function applied to the kernel weights matrix. |
recurrent_constraint | Constraint function applied to the recurrent_kernel weights matrix. |
bias_constraint | Constraint function applied to the bias vector. |
return_sequences | Boolean. Whether to return the last output in the output sequence, or the full sequence. (default FALSE) |
return_state | Boolean Whether to return the last state in addition to the output. (default FALSE) |
go_backwards | Boolean (default FALSE). If TRUE, process the input sequence backwards. |
stateful | Boolean (default FALSE). If TRUE, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. |
dropout | Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. |
recurrent_dropout | Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. |
… | standard layer arguments. |
Details
Similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.