library(keras)
model <- keras_model_sequential()
model %>%
layer_dense(units = 32, input_shape = c(784)) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax')
model %>% compile(
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)
# alternative way to provide input shape
model <- keras_model_sequential(input_shape = c(784)) %>%
layer_dense(units = 32) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax') keras_model_sequential
Keras Model composed of a linear stack of layers
Description
Keras Model composed of a linear stack of layers
Usage
keras_model_sequential(layers = NULL, name = NULL, ...) Arguments
| Arguments | Description |
|---|---|
| layers | List of layers to add to the model |
| name | Name of model |
| … | Arguments passed on to sequential_model_input_layer input_shapean integer vector of dimensions (not including the batch batch_sizeOptional input batch size (integer or NULL). dtypeOptional datatype of the input. When not provided, the Keras input_tensorOptional tensor to use as layer input. If set, the layer sparseBoolean, whether the placeholder created is meant to be sparse. raggedBoolean, whether the placeholder created is meant to be ragged. type_specA input_layer_name,nameOptional name of the input layer (string). |
Note
If any arguments are provided to ..., then the sequential model is initialized with a InputLayer instance. If not, then the first layer passed to a Sequential model should have a defined input shape. What that means is that it should have received an input_shape or batch_input_shape argument, or for some type of layers (recurrent, Dense…) an input_dim argument.
Examples
See Also
Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(), evaluate_generator(), fit.keras.engine.training.Model(), fit_generator(), get_config(), get_layer(), keras_model(), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(), predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(), train_on_batch()