library(keras)
<- keras_model_sequential()
model %>%
model layer_dense(units = 32, input_shape = c(784)) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax')
%>% compile(
model optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)
# alternative way to provide input shape
<- keras_model_sequential(input_shape = c(784)) %>%
model layer_dense(units = 32) %>%
layer_activation('relu') %>%
layer_dense(units = 10) %>%
layer_activation('softmax')
keras_model_sequential
Keras Model composed of a linear stack of layers
Description
Keras Model composed of a linear stack of layers
Usage
keras_model_sequential(layers = NULL, name = NULL, ...)
Arguments
Arguments | Description |
---|---|
layers | List of layers to add to the model |
name | Name of model |
… | Arguments passed on to sequential_model_input_layer input_shape an integer vector of dimensions (not including the batch batch_size Optional input batch size (integer or NULL). dtype Optional datatype of the input. When not provided, the Keras input_tensor Optional tensor to use as layer input. If set, the layer sparse Boolean, whether the placeholder created is meant to be sparse. ragged Boolean, whether the placeholder created is meant to be ragged. type_spec A input_layer_name,name Optional name of the input layer (string). |
Note
If any arguments are provided to ...
, then the sequential model is initialized with a InputLayer
instance. If not, then the first layer passed to a Sequential model should have a defined input shape. What that means is that it should have received an input_shape
or batch_input_shape
argument, or for some type of layers (recurrent, Dense…) an input_dim
argument.
Examples
See Also
Other model functions: compile.keras.engine.training.Model()
, evaluate.keras.engine.training.Model()
, evaluate_generator()
, fit.keras.engine.training.Model()
, fit_generator()
, get_config()
, get_layer()
, keras_model()
, multi_gpu_model()
, pop_layer()
, predict.keras.engine.training.Model()
, predict_generator()
, predict_on_batch()
, predict_proba()
, summary.keras.engine.training.Model()
, train_on_batch()