library(keras)
# input layer
<- layer_input(shape = c(784))
inputs
# outputs compose input + dense layers
<- inputs %>%
predictions layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 10, activation = 'softmax')
# create and compile model
<- keras_model(inputs = inputs, outputs = predictions)
model %>% compile(
model optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)
keras_model
Keras Model
Description
A model is a directed acyclic graph of layers.
Usage
keras_model(inputs, outputs = NULL, ...)
Arguments
Arguments | Description |
---|---|
inputs | Input layer |
outputs | Output layer |
… | Any additional arguments |
Examples
See Also
Other model functions: compile.keras.engine.training.Model()
, evaluate.keras.engine.training.Model()
, evaluate_generator()
, fit.keras.engine.training.Model()
, fit_generator()
, get_config()
, get_layer()
, keras_model_sequential()
, multi_gpu_model()
, pop_layer()
, predict.keras.engine.training.Model()
, predict_generator()
, predict_on_batch()
, predict_proba()
, summary.keras.engine.training.Model()
, train_on_batch()