get_config
Layer/Model configuration
Description
A layer config is an object returned from get_config()
that contains the configuration of a layer or model. The same layer or model can be reinstantiated later (without its trained weights) from this configuration using from_config()
. The config does not include connectivity information, nor the class name (those are handled externally).
Usage
get_config(object)
from_config(config, custom_objects = NULL)
Arguments
Arguments | Description |
---|---|
object | Layer or model object |
config | Object with layer or model configuration |
custom_objects | list of custom objects needed to instantiate the layer, e.g., custom layers defined by new_layer_class() or similar. |
Value
get_config()
returns an object with the configuration, from_config()
returns a re-instantiation of the object.
Note
Objects returned from get_config()
are not serializable. Therefore, if you want to save and restore a model across sessions, you can use the model_to_json()
function (for model configuration only, not weights) or the save_model_tf()
function to save the model configuration and weights to the filesystem.
See Also
Other model functions: compile.keras.engine.training.Model()
, evaluate.keras.engine.training.Model()
, evaluate_generator()
, fit.keras.engine.training.Model()
, fit_generator()
, get_layer()
, keras_model_sequential()
, keras_model()
, multi_gpu_model()
, pop_layer()
, predict.keras.engine.training.Model()
, predict_generator()
, predict_on_batch()
, predict_proba()
, summary.keras.engine.training.Model()
, train_on_batch()
Other layer methods: count_params()
, get_input_at()
, get_weights()
, reset_states()