R/model.R

evaluate_generator

(Deprecated) Evaluates the model on a data generator.

Description

The generator should return the same kind of data as accepted by test_on_batch().

Usage

 
evaluate_generator( 
  object, 
  generator, 
  steps, 
  max_queue_size = 10, 
  workers = 1, 
  callbacks = NULL 
) 

Arguments

Arguments Description
object Model object to evaluate
generator Generator yielding lists (inputs, targets) or (inputs, targets, sample_weights)
steps Total number of steps (batches of samples) to yield from generator before stopping.
max_queue_size Maximum size for the generator queue. If unspecified, max_queue_size will default to 10.
workers Maximum number of threads to use for parallel processing. Note that parallel processing will only be performed for native Keras generators (e.g. flow_images_from_directory()) as R based generators must run on the main thread.
callbacks List of callbacks to apply during evaluation.

Value

Named list of model test loss (or losses for models with multiple outputs) and model metrics.

See Also

Other model functions: compile.keras.engine.training.Model(), evaluate.keras.engine.training.Model(), fit.keras.engine.training.Model(), fit_generator(), get_config(), get_layer(), keras_model_sequential(), keras_model(), multi_gpu_model(), pop_layer(), predict.keras.engine.training.Model(), predict_generator(), predict_on_batch(), predict_proba(), summary.keras.engine.training.Model(), train_on_batch()