application_mobilenet
MobileNet model architecture.
Description
MobileNet model architecture.
Usage
 
application_mobilenet( 
  input_shape = NULL, 
  alpha = 1, 
  depth_multiplier = 1L, 
  dropout = 0.001, 
  include_top = TRUE, 
  weights = "imagenet", 
  input_tensor = NULL, 
  pooling = NULL, 
  classes = 1000L, 
  classifier_activation = "softmax", 
  ... 
) 
 
mobilenet_preprocess_input(x) 
 
mobilenet_decode_predictions(preds, top = 5) 
 
mobilenet_load_model_hdf5(filepath) Arguments
| Arguments | Description | 
|---|---|
| input_shape | optional shape list, only to be specified if include_topis FALSE (otherwise the input shape has to be(224, 224, 3)(withchannels_lastdata format) or (3, 224, 224) (withchannels_firstdata format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g.(200, 200, 3)would be one valid value. | 
| alpha | controls the width of the network. - If alpha< 1.0, proportionally decreases the number of filters in each layer.- If alpha> 1.0, proportionally increases the number of filters in each layer.- If alpha= 1, default number of filters from the paper are used at each layer. | 
| depth_multiplier | depth multiplier for depthwise convolution (also called the resolution multiplier) | 
| dropout | dropout rate | 
| include_top | whether to include the fully-connected layer at the top of the network. | 
| weights | NULL(random initialization),imagenet(ImageNet weights), or the path to the weights file to be loaded. | 
| input_tensor | optional Keras tensor (i.e. output of layer_input()) to use as image input for the model. | 
| pooling | Optional pooling mode for feature extraction when include_topisFALSE. -NULLmeans that the output of the model will be the 4D tensor output of the last convolutional layer. -avgmeans that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. -maxmeans that global max pooling will be applied. | 
| classes | optional number of classes to classify images into, only to be specified if include_topis TRUE, and if noweightsargument is specified. | 
| classifier_activation | A string or callable. The activation function to use on the “top” layer. Ignored unless include_top = TRUE. Setclassifier_activation = NULLto return the logits of the “top” layer. Defaults to'softmax'. When loading pretrained weights,classifier_activationcan only beNULLor"softmax". | 
| … | For backwards and forwards compatibility | 
| x | input tensor, 4D | 
| preds | Tensor encoding a batch of predictions. | 
| top | integer, how many top-guesses to return. | 
| filepath | File path | 
Details
The mobilenet_preprocess_input() function should be used for image preprocessing. To load a saved instance of a MobileNet model use the mobilenet_load_model_hdf5() function. To prepare image input for MobileNet use mobilenet_preprocess_input(). To decode predictions use mobilenet_decode_predictions().
Section
Reference
Value
application_mobilenet() and mobilenet_load_model_hdf5() return a Keras model instance. mobilenet_preprocess_input() returns image input suitable for feeding into a mobilenet model. mobilenet_decode_predictions() returns a list of data frames with variables class_name, class_description, and score (one data frame per sample in batch input).