activation_relu
Activation functions
Description
relu(...): Applies the rectified linear unit activation function. elu(...): Exponential Linear Unit. selu(...): Scaled Exponential Linear Unit (SELU). hard_sigmoid(...): Hard sigmoid activation function. linear(...): Linear activation function (pass-through). sigmoid(...): Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x)). softmax(...): Softmax converts a vector of values to a probability distribution. softplus(...): Softplus activation function, softplus(x) = log(exp(x) + 1). softsign(...): Softsign activation function, softsign(x) = x / (abs(x) + 1). tanh(...): Hyperbolic tangent activation function. exponential(...): Exponential activation function. gelu(...): Applies the Gaussian error linear unit (GELU) activation function. swish(...): Swish activation function, swish(x) = x * sigmoid(x).
Usage
activation_relu(x, alpha = 0, max_value = NULL, threshold = 0)
activation_elu(x, alpha = 1)
activation_selu(x)
activation_hard_sigmoid(x)
activation_linear(x)
activation_sigmoid(x)
activation_softmax(x, axis = -1)
activation_softplus(x)
activation_softsign(x)
activation_tanh(x)
activation_exponential(x)
activation_gelu(x, approximate = FALSE)
activation_swish(x) Arguments
| Arguments | Description |
|---|---|
| x | Tensor |
| alpha | Alpha value |
| max_value | Max value |
| threshold | Threshold value for thresholded activation. |
| axis | Integer, axis along which the softmax normalization is applied |
| approximate | A bool, whether to enable approximation. |
Details
Activations functions can either be used through layer_activation(), or through the activation argument supported by all forward layers.
activation_selu()to be used together with the initialization “lecun_normal”.activation_selu()to be used together with the dropout variant “AlphaDropout”.
Section
References
activation_swish(): Searching for Activation Functionsactivation_gelu(): Gaussian Error Linear Units (GELUs)activation_selu(): Self-Normalizing Neural Networksactivation_elu(): Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Value
Tensor with the same shape and dtype as x.
See Also
https://www.tensorflow.org/api_docs/python/tf/keras/activations