Masks a sequence by using a mask value to skip timesteps.

For each timestep in the input tensor (dimension #1 in the tensor), if all values in the input tensor at that timestep are equal to mask_value, then the timestep will be masked (skipped) in all downstream layers (as long as they support masking). If any downstream layer does not support masking yet receives such an input mask, an exception will be raised.

layer_masking(object, mask_value = 0, input_shape = NULL,
  batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
  name = NULL, trainable = NULL, weights = NULL)



Model or layer object


float, mask value


Dimensionality of the input (integer) not including the samples axis. This argument is required when using this layer as the first layer in a model.


Shapes, including the batch size. For instance, batch_input_shape=c(10, 32) indicates that the expected input will be batches of 10 32-dimensional vectors. batch_input_shape=list(NULL, 32) indicates batches of an arbitrary number of 32-dimensional vectors.


Fixed batch size for layer


The data type expected by the input, as a string (float32, float64, int32...)


An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.


Whether the layer weights will be updated during training.


Initial weights for layer.

See also